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Abstract—The robust tracking of abrupt motion is a challenging
task in computer vision due to its large motion uncertainty. While
various particle filters and conventional Markov-chain Monte
Carlo (MCMC) methods have been proposed for visual tracking,
these methods often suffer from the well-known local-trap problem
or from poor convergence rate. In this paper, we propose a novel
sampling-based tracking scheme for the abrupt motion problem
in the Bayesian filtering framework. To effectively handle the
local-trap problem, we first introduce the stochastic approxima-
tion Monte Carlo (SAMC) sampling method into the Bayesian
filter tracking framework, in which the filtering distribution is
adaptively estimated as the sampling proceeds, and thus, a good
approximation to the target distribution is achieved. In addition,
we propose a new MCMC sampler with intensive adaptation
to further improve the sampling efficiency, which combines a
density-grid-based predictive model with the SAMC sampling,
to give a proposal adaptation scheme. The proposed method is
effective and computationally efficient in addressing the abrupt
motion problem. We compare our approach with several alterna-
tive tracking algorithms, and extensive experimental results are
presented to demonstrate the effectiveness and the efficiency of the
proposed method in dealing with various types of abrupt motions.

Index Terms—Abrupt motion, intensive adaptation, Markov-
chain Monte Carlo (MCMC), stochastic approximation, visual
tracking.

I. INTRODUCTION

V ISUAL tracking in dynamic scenarios refers to estab-
lishing the correspondences of the object of interest

between the successive frames. It is a fundamental research
topic in video analysis and has a variety of potential applica-
tions, including teleconferencing, gesture recognition, visual
surveillance, and motility analysis.

As an important topic in the computer vision community, vi-
sual tracking has been extensively studied in the past decades,
and a number of approaches have been proposed in the litera-
ture. In general, these tracking approaches can be divided into
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two categories [38], i.e., deterministic ones [11], [12] and sam-
pling-based ones [1]–[3], [7]–[10]. The deterministic ones are
a class of successful tracking methods that have been popular
over the years due to their fast convergence speed and relatively
lower computational cost. However, they are prone to getting
trapped in local modes in case of background clutter, distrac-
tions, or rapid moving object, as discussed in [2].

By maintaining multiple hypotheses, the sampling-based
tracking methods are able to deal with the multimodal dis-
tribution and recover from the tracking failure, among which
the particle filter (PF), also known as the sequential Monte
Carlo [4], [5], is the most popular one and is first utilized for
visual tracking in [1]. The basic idea of the PF is to use a set of
weighted particles to approximate the true filtering distribution.
The PF has achieved considerable success in visual tracking and
becomes a widely used framework that is highly extensible and
offers the flexibility to handle nonlinearity and non-normality
in the object models.

In real world, many tracking tasks suffer from the multimodal
likelihood and posterior, high-dimensionality and inaccurate
local evidence. To facilitate efficient tracking, in general, most
existing approaches are based on a smooth motion assumption
or an accurate motion model. However, abrupt motions are
common in real-world scenarios, such as fast motion, camera
switching, low-frame-rate videos, and unexpected object
dynamic.

It is challenging for tracking methods, both deterministic ones
and sampling-based ones, to deal with the large motion uncer-
tainty induced by abrupt motions. Intuitively, a direct solution
for the sampling-based tracking methods is to enlarge the sam-
pling variance to cover the possible motion uncertainty. Nev-
ertheless, there exists a problematic issue to be addressed, i.e.,
the sampling inefficiency. This is because the increase in the
sampling volume may require a more expensive computational
cost, particularly for the systems with the high-dimensional state
space.

The success of the PF highly relies on its ability to maintain
a good approximation to the posterior distribution. For com-
plex filtering distribution with rugged energy landscape, a large
number of particles are required to guarantee sufficient sampling
in the broad state space. The high computational burden caused
by a large number of particles often makes the PF infeasible
for practical applications. In the recent years, many extensions
[6] to PF have been made to reduce the computational cost and
improve the sampling efficiency. Among them, Markov-chain
Monte Carlo (MCMC) methods have received much attention
in visual tracking. In [7], a simulated annealing process is in-
corporated into the conventional PF [1], which allows for the
generation of the samples closer to the true modes of the pos-
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terior distribution and avoids the problem of getting trapped in
local modes of the high-dimensional sample space for articu-
lated body tracking. In [8]–[10], the widely used importance
sampling (IS) is replaced with MCMC to sample from the poste-
rior distribution. The benefit for this replacement lies in the fact
that, by using a well-designed proposal distribution, MCMC is
capable of generating posterior samples that converge to the pos-
terior mode in a much efficient manner.

Although popular and commonly used, the plain Gibbs
sampler or Metropolis–Hastings (MH) algorithm often gets
trapped in the local optimum when the energy landscape of
the target distribution is rugged. The inability of the simulated
Markov chain to move around the energy landscape often
leads to an inaccurate Bayesian inference. To overcome the
local-trapped problem, many advanced MCMC algorithms have
been recently developed in physics and statistics [28]. Among
them, the adaptive MCMC algorithms [21]–[25] have shown
more superiority in improving the mixing and acceptance rates,
even if much research is still expected in this exciting area.
In principle, an adaptive MCMC algorithm aims to simulate
a good chain, the distribution of which is closer to the target
distribution by using the historical samples, and thus reduces
the variance of the estimate of interest.

In this paper, a novel sampling-based tracking scheme is
proposed to effectively deal with the abrupt motion difficulty
in the Bayesian filtering framework. Rather than simply adopt
the sequential importance resampling (SIR) [1]–[3] or stan-
dard MCMC sampling algorithm, which is common for the
state-of-the-art tracking methods [7]–[10], we propose a more
effective dynamic IS scheme to sample from the filtering
distribution by using the stochastic approximation Monte
Carlo (SAMC) algorithm [21] and present a sequential SAMC
sampling algorithm for the tracking of abrupt motion, which
demonstrates superiority in dealing with the local-trap problem
with less computational burden.

For the proposed sequential SAMC tracking method, how-
ever, to guarantee its robustness, a certain number of samples
are still required to capture the abrupt motion due to the broad-
ness of the whole state space. We propose a more effective
sampling algorithm to further reduce the computational cost.
We achieve this by introducing a density-grid-based predictive
model, which carries the statistical information about the filter
distribution, to predict the promising regions of the state space
in sampling. Based on the predicted result, a more informative
proposal is learned on the fly, which helps to bias the sampling
toward the promising regions of the state space to improve the
sampling efficiency.

The remainder of this paper is organized as follows: In
Section II, we review some related tracking algorithms. The
proposed sequential SAMC sampling algorithm is described in
Section III. In Section IV, we elaborate the intensively adaptive
MCMC (IA-MCMC) sampler for abrupt motion tracking.
Implementation details and experimental results are presented
in Section V, and Section VI concludes this paper. An earlier
version of this paper appeared in [42].

II. RELATED WORK

There is a rich literature in visual tracking [38]. Here, we
review only the most relevant tracking approaches, focusing

on algorithms that directly aim to deal with the abrupt motion
difficulty.

The simplest solution to the abrupt motion problem is
searching the whole state space to fully cover the motion
uncertainty. In practice, however, it is infeasible due to the
large search space of the object state, which often results in an
extremely expensive computational cost. Indeed, an accurate
dynamic model can be used to estimate the search space based
on the object state prediction. However, accurate dynamic
models are often learned from the specific training data [13],
[14], and this often makes the tracking approaches less flexible.

Multiscale and hierarchical sampling strategy is another solu-
tion to this problem. This tracking approach aims at alleviating
the effect by the abrupt motion to improve the sampling effi-
ciency in the solution space. In the Bayesian context, Sullivan et
al. [15] combined observations from multiple scales to facilitate
efficient searching in the fine scale. A potential problem of this
method is that inaccurate inference in the large scale may cause
the failure of searching in a fine scale. To overcome this problem
of potential error propagation, Hua and Wu [16] proposed to
design a collaborative searching scheme based on the dynamic
Markov network and developed a sequential-belief-propagation
scheme for more accurate Bayesian inference. Recently, Li et
al. [17] proposed a cascade PF to deal with the large motion
uncertainty of the target object. While this approach has shown
high efficiency in several face tracking cases, it requires sev-
eral reliable observation models and an additive offline learning
process.

In contrast with the approaches based on the specific dynamic
model [13], [14], we propose to cope with the abrupt motion
based on an adaptive sampling strategy without using any prior
knowledge about the object motion. Moreover, different from
the multiscale layer sampling or cascade filtering approaches
[15]–[17] that may still suffer from the local-trap problem in
sampling from the complex target distribution with deep local
modes, we explicitly address the abrupt motion tracking in
the Bayesian filter framework and aim to propose an efficient
sampling scheme to essentially avoid the local-trap problem
in sampling. Approaches that are the most similar in sampling
mechanism to ours may be the Wang–Landau (WL) based
tracking algorithm [18]. In [18], Kwon and Lee proposed a
novel tracking approach to effectively deal with the local-trap
problem in tracking by using a well-designed annealing WL
sampling scheme. Note that the WL algorithm [20] itself is
a MCMC method with target distribution adaptation, which
solves both the weight estimation and the sampling problem
in a single run. Compared with [18], the algorithm proposed
in this paper is more principled and adaptive. First, the pro-
posed IA-MCMC algorithm is a dynamic IS method in the
Bayesian filtering framework, in which the target distribution
is adaptively estimated from iteration to iteration in a more
efficient way by introducing a stochastic approximation process
(SAP) [21] into the learning process of the working weight,
and the filtering inference based on this sampling scheme is
supported by the rigorous theory in statistics literatures [27],
[35], [36]. Second, our sampling method is able to not only
avoid the local-trap problem by target distribution adaptation
but also improve the overall sampling efficiency by learning the
proposal distribution on the fly.
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III. SEQUENTIAL SAMC SAMPLING

Here, we present details of the proposed sequential SAMC
sampling algorithm for the tracking of abrupt motion. We first
make a brief review on the Bayesian filtering framework. Then,
the basic idea behind dealing with the local-trap problem suf-
fered by conventional sampling algorithms is discussed.

A. Sequential Bayesian Filtering

Visual tracking can be formulated as an inference task in a
Markov model with hidden state variables, and it is often ad-
dressed in the Bayesian context. Let denote the object state
at time . Given a series of observations
up to time , our aim is to estimate the hidden state variable

. According to Bayes’ rule, the filtering distribution
can be recursively estimated by

(1)
where is the prior model describing the temporal
evolution of the state variable and is the observation
likelihood. For nonlinear and non-normal systems, integral (1)
is often analytically intractable.

The PF is one of the most popular methods to address this fil-
tering problem. It approximates the filtering distribution (1) with
a set of weighted particles at each time step. While the PF and its
variants have achieved considerable success in visual tracking,
there exists the well-known sample impoverishment problem,
due to their suboptimal sampling nature in the IS process, par-
ticularly for systems with high-dimensional state space. To im-
prove the sampling efficiency, as discussed in Section I, many
MCMC methods have been introduced to address this problem.
For complex target distribution with rugged energy landscape,
however, a more effective and efficient sampling algorithm is
still desired for practical tracking systems.

B. Basic Idea of Our Approach

To achieve a good approximation to the filtering distribution,
traditional MCMC algorithms can be used to simulate a Markov
chain that converges to a stationary distribution, i.e., filtering
distribution. MH is a commonly used MCMC algorithm, and
many practical MCMC samplers can be regarded as the exten-
sions of this sampler. Given the target distribution ,
an MH sampling step includes drawing a candidate sample
based on the current sample , by using a proposal .
With these notations, a Markov chain grows and moves to
with the acceptance probability , i.e.,

(2)

otherwise remains at . From (2), we can observe that the
local-trap problem may occur when the sample drawn form the
proposal distribution lies in the tail of the filtering dis-
tribution (1) or the filtering distribution is peaked.

For abrupt motion tracking, the sample space of the filtering
distribution may be much broader than that of the smooth
tracking, and thus, its energy landscape may be rugged. From
the perspective of energy space, if one sampler can make a
random walk in each energy subregion of the filtering distribu-
tion, then the local-trap problem will be essentially overcome.

Fig. 1. Overview of the sequential SAMC sampling algorithm.

Let denote the state space of the filtering distribution (1).
Suppose that has been partitioned into disjoint subregions,
i.e., , , according to the real-valued
energy function . Here, . We
now consider the following trial distribution:

(3)

where and is the indicator function.
can be regarded as the density of

states (DoS) or the spectral density in physics. Intuitively, if
can be learned during sampling, sampling from the trial distri-
bution will result in a “free” random walk in the space of
energy (by regarding each energy subregion as a single sample
“point”). Hence, the local-trap problem can be essentially over-
come.

The basic idea behind sampling from the trial distribution (3)
instead of the original filtering distribution (1) is mainly moti-
vated by the multicanonical algorithms [20], [21], [29], which
have achieved great success in physics. We remark that most
of them are devoted to the optimization problems in physics or
statistics. In the context of Bayesian tracking, however, some
relevant issues, such as particles propagation, IS, and choice of
the proposal distribution, should be collectively addressed. In
what follows, we elaborate how to incorporate the SAMC sam-
pling [21] into the Bayesian filtering framework to give a novel
tracking scheme.

C. Sequential SAMC Sampling

Motivated by the aforementioned discussion, we propose a
sequential SAMC sampling framework. To give a clear view, the
flowchart of the proposed sequential SAMC sampling frame-
work is schematically depicted in Fig. 1. Similar to SIR [4],
there are three major stages in the sequential SAMC, i.e., parti-
cles propagation, SAMC sampling, and sample reweighting.

1) Particles Propagation: In the particle propagation stage,
a resampling process [28] is first run on the input particles set
generated at the previous time step to give a new particles set
with equal weight . Based on this parti-
cles set, the filtering distribution (1) can be approximated by

.

After that, we need to generate an initial sample for
subsequent sampling operations. The initial sample is proposed
based on a Gaussian transition with mean

and covariance , where and
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Fig. 2. Illustration of proposal ��� ��� in a 2-D sample space, which is di-
vided into cells using a discretized grid. This proposal accounts for (dashed
arrow) the global hopping, as well as (solid arrow) the local random walk.

represent the maximum a posteriori (MAP) estimates of the pre-
vious states. and define the second-order autoregression
(AR2) model with constant acceleration. It is sufficient for our
particles propagation to use such a weak transition model since
our objective is only to produce an initial sample to characterize
the smooth motion, and the abrupt motion can be covered by
subsequent SAMC sampling operations.

2) SAMC Sampling: In the sampling stage, we aim at sim-
ulating a chain converges to the filtering distribution (1) using
the SAMC previously described. The sampling stage consists
of three major consecutive steps, i.e., proposal, acceptance, and
working-weight updating.

In practice, the proposal distribution used for our sampling
scheme should be carefully designed to account for the large
motion uncertainty. Suppose the sample space of our filtering
problem is compact and bounded. Different from the partition
of the sample space for the DoS learning according to the real-
valued energy function, we now give another partition method
for the sample space to facilitate effective proposal operation.
For the -dimensional sample space ,

, we use a discretized grid to divide it into multidimen-
sional cells. For each dimension , its space is divided into
intervals, i.e., . Thus, the sample space is com-
posed of cells, and each cell can be represented
by

(4)

where . Let
denote the cell into which sample
falls. We have . With the foregoing notations, we
define the following mixture proposal:

(5)

where is a normal distribution with mean
and covariance , denotes a uniform distribution on
the cell set , and parameter steers
the balance between the local random walk and the global sto-
chastic hopping. The proposal previously defined is illustrated
in Fig. 2. It is easy to verify that is a global proposal,
i.e., for all , .

Given the current sample at iteration , suppose candi-
date has been generated by using proposal . We

then use a single MH update to determine whether the candi-
date sample is accepted or not. The acceptance probability

is defined by

(6)

where denotes the index of the subregion which sample
belongs to.

Once a new sample, e.g., , is simulated by the sampling
process previously described, a updating step for the working
weight will be run to update the DoS of each energy subregion,
i.e.,

(7)

for , where .
denotes the desired sampling distribution on the en-

ergy subregions and is the gain factor that controls the speed
of weight learning. In general, a positive and nonincreasing
sequence is required to satisfy the following conditions
[21]:

(8)

for some . The gain factor is empirically set by
for some . The weight learning is based

on a SAP that belongs to a general class of the stochastic approx-
imation algorithms of the Robbins–Monro type [30]. Compared
with the WL algorithm [20], SAMC shows more superiority in
sampling efficiency due to its self-adjusting mechanism, which
makes the sampling less trapped by local modes. In fact, from
(6) and (7), we can see that, if a proposal is rejected, the weight
(i.e., DoS) of the energy subregion that the current sample be-
longs to will be adjusted to a larger value, and thus, the proba-
bility of jumping out from the current subregion will increase in
the next iteration. Meanwhile, the weights of other energy sub-
regions will be adjusted to a smaller value, and thus, the proba-
bility of jumping to one of these energy subregions will increase
in the next iteration.

D. Sample Reweighting

Let represent the sample set drawn by SAMC
whose invariant distribution is . Notice that SAMC itself
falls into the dynamic important sampling algorithm [27], [35],
[36]. When used to sample from the trial distribution (3), it
generates a set of weighted samples to approximate the filtering
distribution (1). As a result, each sample is augmented by
weight , where denotes the index of the

subregion into which sample falls. Therefore, the filtering
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distribution at each time can be represented by the particles
set . It should be noticed that the sample’s
weight is dynamically estimated during the sampling process,
since DoS is learned on the fly in sampling.

Based on the resulting particles set, the object state is typ-
ically estimated according to the minimum mean square error
(MMSE) or MAP criterion. PFs often use the moments of the
distribution, such as mean, to estimate the state vector. Although
the mean is optimal in the MMSE sense, it may not be appro-
priate for the filtering distribution with complex multimodal fea-
ture. In this paper, we use the MAP criterion to estimate the ob-
ject state at each time step.

IV. IA-MCMC

Indeed, the proposed sequential SAMC sampling algorithm
can deal with the large motion uncertainty. However, to guar-
antee its robustness, a certain number of samples are still needed
to capture the abrupt motion. This is because the “uninforma-
tive” proposal distribution for the sequential SAMC sampling
often proposes samples with a low acceptance rate due to the
broadness of the whole sample space. To further improve the
overall sampling efficiency, we need to design a more efficient
sampling algorithm.

By introducing a SAP into the MCMC sampling framework,
SAMC can effectively overcome the local-trap problem during
sampling even when the energy landscape is rugged. Even so,
we believe that SAMC can be further adapted to improve its
sampling efficiency. Our approach is partially motivated by the
methodology of the adaptive MCMC algorithms [25], [34], the
proposal distribution of which is adaptively updated using the
past samples in simulations, and thus improves the convergence
rate of the MCMC sampling. In this paper, we expect to es-
timate the promising regions (volumes) of the sample space
and to thus learn more informative proposals to speed up the
overall sampling process. We achieve this by introducing a den-
sity-grid-based predictive model into the SAMC sampling to
give a sampling–prediction–sampling scheme. The density grid
model carries the online statistical information about the fil-
tering distribution. As applied to abrupt motion tracking, the
promising regions correspond to those density regions with high
posterior, i.e., regions that are most likely to compactly contain
the target object.

The reason for the use of a density-grid-based predictive
model in the SAMC sampling process lies in the fact that the
density grid model aims to estimate the promising regions of
the sample space so that the new samples generated from these
promising regions will have more chances to reach the global
optimum than one simply drawn by uninformative proposal op-
eration over the broad sample space, whereas SAMC allows the
sampling to explore the whole sample space and produce more
representative samples. In principle, the proposed algorithm is
an MCMC sampler, the target distribution adaptation of which
is to overcome the local-trap problem in sampling, whereas the
proposal adaptation aims to improve the overall sampling effi-
ciency. The proposed IA-MCMC sampling scheme is depicted
in Fig. 3.

Fig. 3. Illustration of the IA-MCMC sampler in the sequential Bayesian
filtering framework.

IA-MCMC is a two-step sampling scheme that involves pre-
liminary sampling and adaptive sampling. The preliminary sam-
pling aims to discover the rough modes of the energy landscape,
whereas the adaptive sampling is to refine the promising regions
of the sample space and to thus guide the sampling around the
posterior modes.

A. Density Grid

Here, we introduce the density grid structure and its associ-
ated operations, which found the basis of the predictive model
for the proposal adaptation in IA-MCMC. Although our model
here shares some common features as the cluster model de-
scribed in [37], which operates on the sequential incoming un-
weighted samples, our aim is to perform prediction based on the
online samples with energy (filtering) information.

We extend the discretized grid (discussed in Section III) to
the density grid by introducing the concept of the density of the
cell. Let denote the density grid, the density of each cell of
which is initialized with zero values. For each online sample
drawn by SAMC, we assign it a density coefficient defined by

, where is the en-
ergy function of the filtering distribution. Introducing the con-
cept of the density coefficient allows us to effectively discover
and refine the promising regions of the sample space by placing
more density weights on those of samples with lower energy.
Based on the density coefficient, the density value of a cell unit
can be easily calculated. For the cell unit at iteration , its
density is defined as the sum of the density coefficient of all
samples falling into , i.e.,

(9)

We now show how to construct the predictive model based on
the density grid previously defined. We define promising regions
to be those of cell units with relatively high density. Let
denote a density threshold at iteration . The promising regions
can be defined by

(10)

Typically, threshold is set to average density of all cells
at iteration . As a result, the promising regions of the sample
space are continuously refined as the sampling proceeds, since
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the density of each cell of the density grid is dynamically up-
dated in sampling. From the data-mining point of view, the den-
sity grid can be regarded as an online predictive model that par-
titions the whole sample space into two parts, i.e., promising
regions and nonpromising regions. Although simple, we found
that this model efficiently and effectively performs for the pro-
posal adaptation.

B. Proposal Adaptation

As illustrated in Fig. 3, there are two learning procedures in
IA-MCMC, the working weight of which (i.e., DoS) is learned
by SAMC, and it makes the sampling less trapped by local
modes. Here, we consider another learning procedure, i.e., the
proposal adaptation, to improve the sampling efficiency. Our
purpose here is to learn a more informative proposal that bi-
ases the sampling toward promising regions of the sample space
based on the density grid model previously described.

Notice that the promising regions found by the predic-
tive model may contain multiple cell units. Let denote the
proposal distribution learned by our algorithm at iteration .
Given , we hope to draw a sample from the promising re-
gions with a relatively large probability value. A natural defini-
tion for this proposal is

(11)

where is the probability of sampling from promising regions,
denotes the proposal used to draw samples in the promising

regions , and is the uniform distribution on the non-
promising regions . Here, proposal takes the form
of the proposal defined in (5) but limits the sampling within
the promising regions instead of the whole sample space

. This adaptive proposal accounts for the local random walk
within each promising region, as well as stochastic hopping
among multiple promising regions. In addition, the proposal bi-
ases the sampling toward the promising regions to improve the
sampling efficiency. Note that the proposal can propose samples
in nonpromising regions, but it proposes only limited samples
there to help the sampling less trapped by the local optimum.

At the beginning of the adaptive sampling step, since the
promising regions have not been well discovered, we hence up-
date the proposal with a high probability value. However, as
the sampling proceeds, the proposal learned from the predictive
model becomes more and more informative, and it is unneces-
sary to update the proposal frequently. We therefore consider
the following updating strategy:

(12)

where is the proposal learned at iteration , is
the proposal used at iteration , and is the learning
rate. Specifically, the learning rate is empirically defined by

, where controls the decreasing speed of
the learning rate, and is the number of samples used for the
preliminary sampling.

C. IA-MCMC Sampling

As previously discussed, the proposed IA-MCMC sampling
scheme is comprised of two steps. In preliminary sampling, we
perform the SAMC sampling without proposal adaptation, using
a certain number of iterations to quickly explore the sample
space to obtain the rough modes of the energy landscape. Based
on the initial samples set generated by SAMC in preliminary
sampling, the initial density grid is established, and the sample
space is then initially grouped into promising regions and non-
promising regions. In the adaptive sampling step, to effectively
find and refine the promising regions, it may consist of sev-
eral stages. The number of iterations, i.e., , for each sampling
stage depends on the complexity of the filtering distribution. As
the sampling stage proceeds, the promising regions are grad-
ually shrunk and refined based on the density grid. Specially,
once the sampling operation steps into a new sampling stage, the
density grid will be reconstructed with a higher resolution. For
example, we can divide each cell unit into four equal-sized cells
and then recalculate the density of all cells. The whole sampling
process of IA-MCMC is illustrated in Fig. 4, and the sequen-
tial IA-MCMC sampling algorithm for abrupt motion tracking
is outlined in Algorithm 1.

The proposed sampling–prediction–sampling scheme can be
viewed as a data-mining-mode embedded sampling algorithm,
which substantially speeds up the overall sampling process of
abrupt motion tracking. Here, the density grid is selected to be
the predictive model for searching the promising regions of the
sample space because of its computational efficiency. It should
be noticed that this density grid is repeatedly used in the adaptive
sampling step.

We have also considered some other predictive models that
might have better performance on prediction, such as the CART
model, as used in [34]. However, they are generally computa-
tionally expensive for our tracking cases that are often required
to be solved in a practical time scale. Finally, the proposed
IA-MCMC algorithm, in theory, falls into the adaptive MCMC
algorithms [25]. The satisfaction of the diminishing adaptation
condition is necessary to ensure its ergodicity. The ergodicity
of the proposed IA-MCMC algorithm can be verified based on
the recent theoretical advances in the ergodicity of the adaptive
MCMC algorithms [22]–[25].

Algorithm 1: Sequential IA-MCMC Sampling

Input: Particles set

Output: Particles set and MAP estimate

Initialization:

1. Sample space partition: ,

2. Density grid initialization: ,

3. DoS initialization: , for

4. Resample to give

Preliminary Sampling:

for to do

1. Propose a candidate sample using proposal (5).

2. Calculate the acceptance ratio according to (6).
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Fig. 4. Illustration of the overall sampling process of IA-MCMC. (a) Abrupt motion caused by camera switching. (b) Initial 2-D density grid (6 � 6 cells).
(c) Rough promising regions found after the preliminary sampling step (at iteration � � ���). (d) Promising regions are shrunk and refined as the sampling goes
on (at iteration � � ���). (e) Distribution of the samples drawn by IA-MCMC, where the samples in red are drawn in the adaptive sampling step.

3. Accept with probability .

4. Update the working weights according to (7).

end for

Adaptive Sampling:

for to do

1. if iteration steps into a new sampling stage then

1.1. Reconstruct with a higher resolution.

1.2. Update for all .

1.3. .

end if

2. Propose a candidate sample using the proposal (12).

3. Calculate the acceptance ratio according to (6).

4. Accept with probability .

5. Update the working weights according to (7).

6. Update for all .

end for

Reweighting:

1. Reweight the samples set .

2. Normalize the weights .

Inference:

1. MAP estimate

End

V. EXPERIMENT

A. Implementation Details

To simplify notations, the tracker based on the sequential
SAMC sampling algorithm is denoted by the SAMC tracker, and
the IA-MCMC tracker refers to the tracking algorithm based on
the sequential IA-MCMC algorithm. In this paper, we represent
the object as a rectangular region defined by its position in the
scenario and the scale of the region, i.e., . Since
our goal is to cope with the large motion uncertainty, it is unnec-
essary to learn the accurate parameters of the dynamic model.
Therefore, we use a weak motion prior [18] defined by

for object position
for object scale (13)

where is a uniform distribution on the 2-D spatial space
and is a normal distribution with mean

and variance , where and define
the AR2 model with constant acceleration. In practice, it is ap-
propriate to account for this weak motion prior for the object
with abrupt motion changes since the object in real scenarios
can move to any position, whereas its scale often approximately
smoothly evolves. In this paper, the variance is set to

.
Under the assumption of the smooth changes of the object

scale, we modify the proposal distribution used in the SAMC
and IA-MCMC trackers. The proposal for the object position
takes the form as defined in (5) and (11), whereas the proposal
for the object scale is modeled as an AR2 process that takes the
form of the motion prior for the scale but uses the MAP estimate
of the previous states instead of the state values and .

In this paper, we adopt the color-based appearance model [3],
and the likelihood function for filtering distribution is based on
the HSV color histogram (110 bins, )
similarity, which is defined by

(14)

where is the reference appearance model, is the can-
didate appearance at , is the Bhattacharyya distance on the
HSV histogram, and is a predefined parameter that is empir-
ically set to 20 in this paper. Since the proposed tracking ap-
proach is more about dealing with the abrupt motion difficul-
ties, we only adopt a simple appearance model. We found that
our tracking approach can effectively deal with the large motion
uncertainty in our tracking cases even using such a simple ob-
servation model.

In our experiments, we empirically partition the sample space
into 50 subregions with equal energy bandwidth, according to
the real-valued energy function . As
discussed in [21], the maximum energy difference in each sub-
region should not be larger than 2 to ensure that the local random
walk within the same subregion has a reasonable acceptance
rate. As to the gain factor , it is set to a relatively large value,
e.g., , at the preliminary sampling steps since a large value
will enable the sampler to explore all the energy subregions
quickly, even when the energy landscape of the filtering distribu-
tion is rugged. Accordingly, parameter is set to 0.2 to facilitate
the global stochastic hopping of the proposal in the preliminary
sampling step, while in the adaptive sampling step, is set to
a small value, e.g., , to facilitate the adaptive sampling
by refining the rough modes of the filtering distribution, and the
bias parameter is set to 0.9 to bias the sampling toward the
promising regions of the sample space. The desired sampling
distribution is set to be uniform, i.e., , .
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Fig. 5. Comparison of the proposed two trackers on the low-frame-rate video (a) Squash and (b) Badminton. (Red) SAMC. (Yellow) IA-MCMC.

For the density grid, it is initially set to a resolution with 6 6
cells, as depicted in Fig. 4(b).

B. Experiment Setup

To test the empirical performance of our tracking approach,
we collected several sequences that involve abrupt motions in
various scenarios. Implemented in MS VC++ based on OpenCV,
our algorithm runs at about 20 frames per second with 300 parti-
cles on a standard 2.8-GHz personal computer. Here, we present
only the sample tracking results. Note that the results can be
better viewed on high-resolution displays or color printouts.

In our experiments, we first compare the tracking per-
formance of our two trackers, i.e., SAMC and IA-MCMC,
by qualitatively evaluating the impact of the proposal
adaptation in sampling. We then compare our method to
three state-of-the-art sampling-based tracking methods, i.e.,
MCMC-PF [8], A-WLMC [18], and the adaptive Metropolis
(AM) based on [26]. For the sake of fair comparison, all the
tracking algorithms adopt the same dynamic (prior) model
and observation likelihood model previously defined. The pro-
posal covariance for the four tracking algorithms are all set to

. In IA-MCMC,
the number of samples for the preliminary sampling is twice as
much as that for each stage of the adaptive sampling step.

C. Impact of the Proposal Adaptation

We begin by giving the results of the proposed two trackers
on a low-frame-rate video Squash, which is obtained by keeping
one frame in every 15 frames from a video with more than
400 original frames. As illustrated in Fig. 5(a), both using 300
samples, IA-MCMC more accurately performed than SAMC
throughout the sequence. We also compare the proposed two
trackers on another low-frame-rate video Badminton, which
is downsampled from an original video with more than 1700
frames by keeping one frame in every ten frames. In this
sequence, some objects (players) have similar color appearance
to the object of interest. As shown in Fig. 5(b), IA-MCMC
performed well except for a very few frames (e.g., #136), in
which the object undergoes large appearance changes; whereas
SAMC failed to track the player in some frames using the same
number of samples.

We then perform a quantitative comparison of tracking ac-
curacy between SAMC and IA-MCMC to further verify that
the use of proposal adaptation in SAMC does help. The ground
truths of the two test videos are manually annotated, and the
comparison is based on the position error in pixels. As shown in
Fig. 6, the position error of IA-MCMC is apparently lower than
that of SAMC, and the former is less trapped by local optimal
modes. We believe that the improved tracking performance of
IA-MCMC is mainly due to the proposal adaptation during the

Fig. 6. Comparison of tracking accuracy between IA-MCMC and SAMC on
the low-frame-rate video (a) Squash and (b) Badminton.

adaptive sampling step, which biases the SAMC sampling to-
ward the promising regions of the sample space to speedup the
overall sampling process.

D. Qualitative Comparison

To qualitatively evaluate the tracking performance of
IA-MCMC, we compare it with the other three trackers on
several test videos that involve abrupt motions in various
scenarios, including fast motion, camera switching, sudden
dynamic changes, and the low-frame-rate videos.

Fast Motion: We first qualitatively evaluate the tracking
performance of the four trackers on the sequence Face [43], in
which a face quickly moves left and right. In this experiment, 50
samples are used for MCMC-PF and AM, and 25 samples for
A-WLMC and ours. As illustrated in Fig. 7, even using only a
few samples, A-WLMC and ours can effectively track the face
with fast motion. On the other hand, MCMC-PF and AM fail
to track the face in some frames, even using more samples. It is
observed that at least 100 samples are required for MCMC-PF
and AM to effectively track the face in this experiment.

Camera switching: The second experiment is to track
a walker in scenarios with camera switching, which causes
abrupt motions of the target object. Our experiments indicated
that IA-MCMC can successfully cope with this large mo-
tion uncertainty. As illustrated in Fig. 8, using 100 samples,
A-WLMC and IA-MCMC successfully tracked the walker
throughout the sequence. On the other hand, even using 1000
samples, MCMC-PF and AM cannot effectively estimate the
abrupt motions when camera switching occurs in scenarios.
The reason for this is mainly due to the fact that the two
trackers have no effective mechanism to handle the local-trap
problem in sampling from the multimodal filtering distribution.
For this sequence, however, it is observed that IA-MCMC
archived higher tracking accuracy than A-WLMC using the
same number of samples, as shown in Fig. 8(c) and (d).

Sudden dynamic changes: The third scenario in our exper-
iments is a pingpong that struck the racket and bounced back
with sudden dynamic changes. The unexpected motion dynamic
makes the tracking task rather hard by learning an accurate
motion model. Our experiment showed that our approach can
effectively deal with this difficulty only using a weak motion
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Fig. 7. Tracking results of the four trackers on the sequence Face. (a) MCMC-PF. (b) AM. (c) A-WLMC. (d) IA-MCMC.

Fig. 8. Tracking results of the four trackers on the sequence Youngki [18]. (a) MCMC-PF. (b) AM. (c) A-WLMC. (d) IA-MCMC.

Fig. 9. Tracking results of the four trackers on the sequence Pingpong. (a) MCMC-PF. (b) AM. (c) A-WLMC. (d) IA-MCMC.

model. With 300 samples, our method successfully tracked the
bouncing pingpong throughout the sequence. Sample frames
are shown in Fig. 9. Note that, in this sequence, the object size
is much smaller than that of the walker in previous experiments.
Accordingly, the promising region of the sample space is much
smaller, and thus, more samples are required for sufficient
sampling in the larger sample space to discover the promising
regions. Even using 1000 samples, MCMC-PF and AM poorly
perform, experiencing a significant drift of the target object.
Moreover, A-WLMC failed to track the pingpong in some
frames using the same number of samples as ours.

Low-frame-rate video: The fourth experiment is to track a
tennis player in a low-frame-rate video, which is downsampled
from a video with more than 700 original frames, by keeping
one frame in every 20 frames. We test four trackers on this se-

quence, and sample frames are shown in Fig. 10. Even using
1000 samples, MCMC-PF and AM frequently lost the track due
to the abrupt motions caused by severe frame dropping; whereas
IA-MCMC effectively dealt with this difficulty using only 300
samples. On the other hand, also using 300 samples, A-WLMC
cannot effectively cope with the abrupt motions of the player in
some frames, as shown in Fig. 10(c).

Camera switching Low-frame-rate video: The final ex-
periment is to qualitatively evaluate the tracking performance
of the four trackers on a synthetic sequence (Walk) that in-
volves the severe abrupt motion of the object caused by both
camera switching and low-frame-rate video. In this sequence,
three persons walk back and forth, and partial occlusions fre-
quently occur. In this experiment, 600 samples are used for
MCMC-PF and AM, and 300 samples are used for A-WLMC
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Fig. 10. Tracking results of the four trackers on the sequence Tennis [18]. (a) MCMC-PF. (b) AM. (c) A-WLMC. (d) IA-MCMC.

Fig. 11. Tracking results of the four trackers on the sequence Walk. (a) MCMC-PF. (b) AM. (c) A-WLMC. (d) IA-MCMC.

Fig. 12. Frame-by-frame comparison of the position error (in pixels) for the four trackers on the four sequences. (a) Face, (b) Pingpong, (c) Tennis, and (d) Walk.

and ours. Sample frames are illustrated in Fig. 11. It is observed
that our approach can effectively track the object throughout the
sequence (except for only a few frames, in which the target ob-
ject is almost completely occluded by another walker, such as
#100). As shown in Fig. 11, A-WLMC fails to track the object in
quite a few frames when partial occlusions occur, although it has
an effective mechanism to deal with the abrupt motion caused by
camera switching and low-frame-rate video. On the other hand,
AM and MCMC-PF frequently lose the track and poorly per-
form on this sequence due to the large motion uncertainty.

E. Quantitative Comparison

To quantitatively evaluate the tracking performance of our
tracker, we compare ours with the other three trackers on the test
sequences. We first define tracking to be lost when the center
position of the estimated rectangle is not in that of the manu-
ally labeled ground truth anymore. We quantitatively evaluate
the performance of the four different trackers in terms of po-
sition error (in pixels) on the four test videos, which involve
different types of abrupt motions, i.e., fast motion, sudden dy-
namic changes, low-frame-rate video, and camera switching. A
frame-by-frame comparison of the position error in pixels for
the four trackers is shown in Fig. 12, and the relative position

error is listed in Table I. Here, the relative position error is de-
fined by , where
is the ground-truth state. The reason for the use of this error
measurement is that it facilitates comparing the tracking accu-
racy for the target objects with different sizes [33]. As shown in
Table I, both the mean relative error and the standard deviation
of our approach are consistently smaller than those of other ap-
proaches, which indicated that the proposed approach is more
accurate and stable even using a small number of samples.

To evaluate how the frame dropping rate affects the tracking
performance of the different approaches, we test the four
trackers on a series of low-frame-rate videos [18], i.e.,
Tennis(10), Tennis(15), Tennis(20), Tennis(25), and Tennis(30),
which are downsampled from a sequence with more than 700
original frames, by keeping one frame in every 10, 15, 20, 25,
and 30 frames, respectively. In this experiment, 300 samples
are used for IA-MCMC; other trackers use 600 samples. Fig. 13
shows the successful tracking rate versus the downsampling
interval of the four trackers. It is observed that the tracking per-
formance of our approach is better than others even using fewer
samples. Moreover, the tracking performances of A-WLMC
and our approach are less affected by the frame dropping rate.
This experiment also verified the robustness of our algorithm
in tracking the object with severe abrupt motions.
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TABLE I
RELATIVE POSITION ERROR OF THE FOUR TRACKERS ON THE TEST SEQUENCES

Fig. 13. Comparison of the four trackers affected by the frame dropping rate.

We also investigated how the parameter settings affect the
tracking performance of the proposed tracker. In our experi-
ments, we found that IA-MCMC can achieve good tracking per-
formance, and it is insensitive to the number of samples for the
preliminary sampling if is set to . This
may be attributed to the fact that seeking the rough modes of the
sample space often requires most of the samples to perform suf-
ficient sampling in the preliminary sampling step. As to param-
eter in (11), it is observed that IA-MCMC works well if it is
set to in the experiments. Finally, parameter in pro-
posal (5) is crucial to the tracking performance of IA-MCMC.
A small is more effective for smooth motions, whereas a large
value of is more suitable for abrupt motions. It is nontrivial to
determine the optimal value of in tracking due to the lack of
prior knowledge on the motion of the target object in real-world
applications. Since we mainly focus on abrupt motion tracking
in this paper, we perform the investigation on how parameter

affects the performance of IA-MCMC on several test videos
that involve various types of abrupt motions, and it is observed
that IA-MCMC performs well if is chosen around in the
experiments. This also indicated that the tracking performance
of IA-MCMC may benefit from a hybrid proposal that properly
combines local random walk and global hopping.

F. Discussions

All the aforementioned experiments have validated the pro-
posed tracking approach. When the target experiences abrupt
motion changes, we can explain the reason why the two ex-
isting methods, i.e., AM and MCMC-PF, poorly perform in the
experiments. This can be attributed to the fact that there is no
mechanism in the two methods to effectively avoid the local-trap
problem during sampling. Thus, they tend to lose the track even
using a large number of samples when abrupt motion occurs. On
the other hand, although A-WLMC is able to handle the local-
trap problem, a certain number of samples are required to guar-
antee sufficient sampling in the broad sample space due to the

fact that it only adopts a less efficient proposal distribution. Al-
though an annealing procedure is incorporated, its sampling effi-
ciency is expected to be further improved for practical tracking
applications. Unlike other methods, our algorithm utilizes the
information of historical samples (particles) of the simulated
chain for intensive adaptation, the target (distribution) adapta-
tion of which helps to deal with the local-trap problem, and
the proposal adaptation facilitates efficient sampling by learning
more informative proposal on the fly. As a result, the proposed
approach can be more effective and efficient to cope with the
abrupt motion changes.

VI. CONCLUSION

We have presented a novel approach for robust abrupt mo-
tion tracking in various scenarios. In the proposed tracking al-
gorithm, we have introduced the SAMC sampling method into
the Bayesian filtering framework to solve the local-trap problem
in sampling suffered by many existing sampling-based tracking
approaches. Furthermore, we have extended the SAMC algo-
rithm to a MCMC sampler with intensive adaptation by learning
the proposal on the fly in sampling. Extensive experiments have
indicated that our method outperforms other alternatives and ex-
hibit better efficiency and effectiveness in the tracking of abrupt
motion. Since this paper has mainly focused on dealing with the
abrupt motion problem, we have not considered the appearance
adaptation. Nevertheless, we believe many state-of-the-art tech-
niques on appearance adaptation [31]–[33], [40], [41] and object
representation [39] can be integrated in our tracking scheme to
further enhance the robustness to the appearance changes and
the background distractions. Our further study will include the
investigation for the situation when the object undergoes signif-
icant motion and appearance changes simultaneously.
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